Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
BMC Vet Res ; 20(1): 125, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561794

RESUMO

BACKGROUND: Resolvin D1 (RvD1), a specialized pro-resolving lipid mediator (SPM), is derived from docosahexaenoic acid (DHA). It plays a key role in actively resolving inflammatory responses, which further reduces small intestinal damage. However, its regulation of the apoptosis triggered by endoplasmic reticulum (ER) stress in intestinal epithelial cells is still poorly understood. The intestinal porcine epithelial cells (IPEC-J2) were stimulated with tunicamycin to screen an optimal stimulation time and concentration to establish an ER stress model. Meanwhile, RvD1 (0, 1, 10, 20, and 50 nM) cytotoxicity and its impact on cell viability and the effective concentration for reducing ER stress and apoptosis were determined. Finally, the effects of RvD1 on ER stress and associated apoptosis were furtherly explored by flow cytometry analysis, AO/EB staining, RT-qPCR, and western blotting. RESULTS: The ER stress model of IPEC-J2 cells was successfully built by stimulating the cells with 1 µg/mL tunicamycin for 9 h. Certainly, the increased apoptosis and cell viability inhibition also appeared under the ER stress condition. RvD1 had no cytotoxicity, and its concentration of 1 nM significantly decreased cell viability inhibition (p= 0.0154) and the total apoptosis rate of the cells from 14.13 to 10.00% (p= 0.0000). RvD1 at the concentration of 1 nM also significantly reduced the expression of glucose-regulated protein 78 (GRP-78, an ER stress marker gene) (p= 0.0000) and pro-apoptotic gene Caspase-3 (p= 0.0368) and promoted the expression of B cell lymphoma 2 (Bcl-2, an anti-apoptotic gene)(p= 0.0008). CONCLUSIONS: Collectively, the results shed light on the potential of RvD1 for alleviating apoptosis triggered by ER stress, which may indicate an essential role of RvD1 in maintaining intestinal health and homeostasis.


Assuntos
Apoptose , Ácidos Docosa-Hexaenoicos , Animais , Suínos , Ácidos Docosa-Hexaenoicos/farmacologia , Tunicamicina/farmacologia , Estresse do Retículo Endoplasmático
2.
Front Plant Sci ; 15: 1367862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601307

RESUMO

Beneficial bacteria that promote plant growth can shield plants from negative effects. Yet, the specific biological processes that drive the relationships between soil microbes and plant metabolism are still not fully understood. To investigate this further, we utilized a combination of microbiology and non-targeted metabolomics techniques to analyze the impact of plant growth-promoting bacteria on both the soil microbial communities and the metabolic functions within ramie (Boehmeria nivea) tissues. The findings indicated that the yield and traits of ramie plants are enhanced after treatment with Bacillus velezensis (B. velezensis). These B. velezensis strains exhibit a range of plant growth-promoting properties, including phosphate solubilization and ammonia production. Furthermore, strain YS1 also demonstrates characteristics of IAA production. The presence of B. velezensis resulted in a decrease in soil bacteria diversity, resulting in significant changes in the overall structure and composition of soil bacteria communities. Metabolomics showed that B. velezensis significantly altered the ramie metabolite spectrum, and the differential metabolites were notably enriched (P < 0.05) in five main metabolic pathways: lipid metabolism, nucleotide metabolism, amino acid metabolism, plant secondary metabolites biosynthesis, and plant hormones biosynthesis. Seven common differential metabolites were identified. Correlation analysis showed that the microorganisms were closely related to metabolite accumulation and yield index. In the B. velezensis YS1 and B. velezensis Y4-6-1 treatment groups, the relative abundances of BIrii41 and Bauldia were significantly positively correlated with sphingosine, 9,10,13-TriHOME, fresh weight, and root weight, indicating that these microorganisms regulate the formation of various metabolites, promoting the growth and development of ramie. Conclusively, B. velezensis (particularly YS1) played an important role in regulating soil microbial structure and promoting plant metabolism, growth, and development. The application of the four types of bacteria in promoting ramie growth provides a good basis for future application of biological fertilizers and bio-accelerators.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38586878

RESUMO

Muscular fatty infiltration is a common issue after rotator cuff tears (RCT) which impairs shoulder function. Females suffer higher prevalence and more severe degree of muscular fatty infiltration after RCT when compared to males, with the underlying mechanisms remaining unclear. Fibro/adipogenic progenitors (FAPs) are the primary source of muscular fatty infiltration following RCT. Our findings disclose that gender-specific disparities in muscular fatty infiltration are linked to mTOR/ULK1-mediated autophagy of FAPs. Decreased autophagic activity contributes to adipogenic differentiation in female FAPs after RCT. Furthermore, metformin could enhance mTOR/ULK1 mediated autophagic processes of FAPs, thereby alleviating fatty infiltration and improving shoulder functionality after RCT. Together, our study reveals that gender differences in muscular fatty infiltration arise from distinct autophagic activities. Metformin could be a promising non-invasive intervention to ameliorate muscular fatty infiltration of RCT.

4.
Nat Commun ; 15(1): 2529, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514612

RESUMO

Transcortical vessels (TCVs) provide effective communication between bone marrow vascular system and external circulation. Although osteocytes are in close contact with them, it is not clear whether osteocytes regulate the homeostasis of TCVs. Here, we show that osteocytes maintain the normal network of TCVs by transferring mitochondria to the endothelial cells of TCV. Partial ablation of osteocytes causes TCV regression. Inhibition of mitochondrial transfer by conditional knockout of Rhot1 in osteocytes also leads to regression of the TCV network. By contrast, acquisition of osteocyte mitochondria by endothelial cells efficiently restores endothelial dysfunction. Administration of osteocyte mitochondria resultes in acceleration of the angiogenesis and healing of the cortical bone defect. Our results provide new insights into osteocyte-TCV interactions and inspire the potential application of mitochondrial therapy for bone-related diseases.


Assuntos
60489 , Osteócitos , Osteócitos/metabolismo , Células Endoteliais , Osso e Ossos , Mitocôndrias
5.
Neuroendocrinology ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228117

RESUMO

INTRODUCTION: Aging is characterized by the deterioration of a wide range of functions in tissues and organs, and Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Hypothyroidism occurs when there is insufficient production of thyroid hormones (THs) by the thyroid. The relationship between hypothyroidism and aging as well as AD is controversial at present. METHODS: We established an animal model of AD (FAD4T) with mutations in the APP and PSEN1 genes, and we performed a thyroid function test and RNA-sequencing (RNA-Seq) of the thyroid from FAD4T and naturally aging mice. We also studied gene perturbation correlation in FAD4T mouse thyroid, bone marrow and brain by futher single-cell RNA sequencing (scRNA-seq) data of bone marrow and brain. RESULTS: In this study, we found alterations in THs in both AD and aging mice. RNA-seq data showed significant upregulation of T-cell infiltration- and cell proliferation-related genes in the FAD4T mouse thyroid. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that upregulated genes were enriched in functional gene modules of activation of immune cells. Downregulated energy metabolism-related genes were prominent in aging thyroids, which reflected the reduction in THs. GSEA showed a similar enrichment tendency in both mouse thyroids, suggesting their analogous inflammation state. In addition, the regulation of leukocyte activation and migration was a common signature between the thyroid, brain and bone marrow of FAD4T mice. CONCLUSIONS: Our findings identified immune cell infiltration of the thyroid as the potential underlying mechanism of the alteration of THs in AD and aging.

6.
Am J Sports Med ; 52(2): 474-484, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38197156

RESUMO

BACKGROUND: Knowledge of acromioclavicular (AC) joint kinematics and distance may provide insight into the biomechanical function and development of new treatment methods. However, accurate data on in vivo AC kinematics and distance between the clavicle and acromion remain unknown. PURPOSE/HYPOTHESIS: The purpose of this study was to investigate 3-dimensional AC kinematics and distance during arm elevation in abduction, scaption, and forward flexion in a healthy population. It was hypothesized that AC kinematics and distance would vary with the elevation angle and plane of the arm. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 19 shoulders of healthy participants were enrolled. AC kinematics and distance were investigated with a combined dual fluoroscopic imaging system and computed tomography. Rotation and translation of the AC joint were calculated. The AC distance was measured as the minimum distance between the medial border of the acromion and the articular surface of the distal clavicle (ASDC). The minimum distance point (MDP) ratio was defined as the length between the MDP and the posterior edge of the ASDC divided by the anterior-posterior length of the ASDC. AC kinematics and distance between different elevation planes and angles were compared. RESULTS: Progressive internal rotation, upward rotation, and posterior tilt of the AC joint were observed in all elevation planes. The scapula rotated more upward relative to the clavicle in abduction than in scaption (P = .002) and flexion (P = .005). The arm elevation angle significantly affected translation of the AC joint. The acromion translated more laterally and more posteriorly in scaption than in abduction (P < .001). The AC distance decreased from the initial position to 75° in all planes and was significantly greater in flexion (P < .001). The MDP ratio significantly increased with the elevation angle (P < .001). CONCLUSION: Progressive rotation and significant translation of the AC joint were observed in different elevation planes. The AC distance decreased with the elevation angle from the initial position to 75°. The minimum distance between the ASDC and the medial border of the acromion moved anteriorly as the shoulder elevation angle increased. CLINICAL RELEVANCE: These results could serve as benchmark data for future studies aiming to improve the surgical treatment of AC joint abnormalities to restore optimal function.


Assuntos
Articulação Acromioclavicular , Articulação do Ombro , Humanos , Fenômenos Biomecânicos , Imageamento Tridimensional , Úmero , Escápula , Acrômio/diagnóstico por imagem , Articulação Acromioclavicular/diagnóstico por imagem , Articulação Acromioclavicular/cirurgia , Amplitude de Movimento Articular
7.
Angew Chem Int Ed Engl ; 63(7): e202315119, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38129317

RESUMO

Alleviating the degradation issue of Pt based alloy catalysts, thereby simultaneously achieving high mass activity and high durability in proton exchange membrane fuel cells (PEMFCs), is highly challenging. Herein, we provide a new paradigm to address this issue via delaying the place exchange between adsorbed oxygen species and surface Pt atoms, thereby inhibiting Pt dissolution, through introducing rare earth bonded subsurface oxygen atoms. We have succeeded in introducing Gd-O dipoles into Pt3 Ni via a high temperature entropy-driven process, with direct spectral evidence attained from both soft and hard X-ray absorption spectroscopies. The higher rated power of 0.93 W cm-2 and superior current density of 562.2 mA cm-2 at 0.8 V than DOE target for heavy-duty vehicles in H2 -air mode suggest the great potential of Gd-O-Pt3 Ni towards practical application in heavy-duty transportation. Moreover, the mass activity retention (1.04 A mgPt -1 ) after 40 k cycles accelerated durability tests is even 2.4 times of the initial mass activity goal for DOE 2025 (0.44 A mgPt -1 ), due to the weakened Pt-Oads bond interaction and the delayed place exchange process, via repulsive forces between surface O atoms and those in the sublayer. This work addresses the critical roadblocks to the widespread adoption of PEMFCs.

8.
ACS Nano ; 17(22): 22418-22429, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37931219

RESUMO

Plasmonic optical nanoantennas offer compelling solutions for enhancing light-matter interactions at the nanoscale. However, until now, their focus has been mainly limited to the visible and near-infrared regions, overlooking the immense potential of the ultraviolet (UV) range, where molecules exhibit their strongest absorption. Here, we present the realization of UV resonant nanogap antennas constructed from paired rhodium nanocubes. Rhodium emerges as a robust alternative to aluminum, offering enhanced stability in wet environments and ensuring reliable performance in the UV range. Our results showcase the nanoantenna's ability to enhance the UV autofluorescence of label-free streptavidin and hemoglobin proteins. We achieve significant enhancements of the autofluorescence brightness per protein by up to 120-fold and reach zeptoliter detection volumes, enabling UV autofluorescence correlation spectroscopy (UV-FCS) at high concentrations of several tens of micromolar. We investigate the modulation of fluorescence photokinetic rates and report excellent agreement between the experimental results and numerical simulations. This work expands the applicability of plasmonic nanoantennas to the deep UV range, unlocking the investigation of label-free proteins at physiological concentrations.


Assuntos
Ródio , Proteínas/química , Polímeros , Espectrometria de Fluorescência/métodos
9.
ACS Appl Mater Interfaces ; 15(48): 55991-56002, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37987746

RESUMO

Although lead-free double perovskites such as Cs2AgBiBr6 have been widely explored, they still remain a daunting challenge for the controlled synthesis of lead-free double perovskite nanocrystals with highly tunable morphology and band structure. Here, we report the controlled synthesis of lead-free double perovskite colloidal nanocrystals including Cs2AgBiBr6 and Cs2AgInxBi1-xBr6 via a facile wet-chemical synthesis method for the fabrication of high-performance nonvolatile resistive memory devices. Cs2AgBiBr6 colloidal nanocrystals with well-defined cuboidal, hexagonal, and triangular morphologies are synthesized through a facile wet-chemical approach by tuning the reaction temperature from 150 to 190 °C. Further incorporating indium into Cs2AgBiBr6 to synthesize alloyed Cs2AgInxBi1-xBr6 nanocrystals not only can induce the indirect-to-direct bandgap transition with enhanced photoluminescence but also can improve its structural stability. After optimizing the active layers and device structure, the fabricated Ag/polymethylene acrylate@Cs2AgIn0.25Bi0.75Br6/ITO resistive memory device exhibits a low power consumption (the operating voltage is ∼0.17 V), excellent cycling stability (>10 000 cycles), and good synaptic property. Our study would enable the facile wet-chemical synthesis of lead-free double perovskite colloidal nanocrystals in a highly controllable manner for the development of high-performance resistive memory devices.

10.
Zhen Ci Yan Jiu ; 48(11): 1168-1174, 2023 Nov 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37984915

RESUMO

There is no systematic and whole-process system for moxibustion standard development at home and abroad, which restricts the industry innovation and technological progress to a certain extent. The paper reviews the study status and finds that the technical standard is dominant in moxibustion standard development currently, represented by conventional moxibustion, heat-sensitive moxibustion, moxibustion on the Governor Vessel, moxibustion with seed-size moxa cone and herb-isolated moxibustion, etc. There are many gaps in the standards development of moxibustion material and device, equipment building, moxa smoke purification, and management and job. On the basis of explaining the standard framework of moxibustion, it is suggested that the moxibustion standardization should be deepened in the aspects of hierarchical technical operation, material selection, research and development of new devices, personnel training and equipment management.


Assuntos
Moxibustão , Fumaça , Temperatura Alta , Padrões de Referência
11.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991016

RESUMO

To provide complementary information and reveal the molecular characteristics and therapeutic insights of HER2-low breast cancer, we performed this multiomics study of hormone receptor-negative (HR-) and HER2-low breast cancer, also known as HER2-low triple-negative breast cancer (TNBC), and identified 3 subgroups: basal-like, receptor tyrosine kinase-relevant (TKR), and mesenchymal stem-like. These 3 subgroups had distinct features and potential therapeutic targets and were validated in external data sets. Interestingly, the TKR subgroup (which exists in both HR+ and HR- breast cancer) had activated HER2 and downstream MAPK signaling. In vitro and in vivo patient-derived xenograft experiments revealed that pretreatment of the TKR subgroup with a tyrosine kinase inhibitor (lapatinib or tucatinib) could inhibit HER2 signaling and induce accumulated expression of nonfunctional HER2, resulting in increased sensitivity to the sequential HER2-targeting, Ab-drug conjugate DS-8201. Our findings identify clinically relevant subgroups and provide potential therapeutic strategies for HER2-low TNBC subtypes.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Receptor ErbB-2/metabolismo , Multiômica , Lapatinib/farmacologia , Transdução de Sinais , Receptores Proteína Tirosina Quinases/metabolismo
12.
Cartilage ; : 19476035231209404, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37881954

RESUMO

OBJECTIVE: Osteochondral defects develop into osteoarthritis without intervention. Costal cartilage can be utilized as an alternative source for repairing osteochondral defect. Our previous clinical study has shown the successful osteochondral repair by costal cartilage graft with integration into host bone bed. In this study, we investigate how cartilaginous graft adapt to osteochondral environment and the mechanism of bone-cartilage interface formation. DESIGN: Costal cartilage grafting was performed in C57BL/6J mice and full-thickness osteochondral defect was made as control. 3D optical profiles and micro-CT were applied to evaluate the reconstruction of articular cartilage surface and subchondral bone as well as gait analysis to evaluate articular function. Histological staining was performed at 2, 4, and 8 weeks after surgery. Moreover, costal cartilage from transgenic mice with fluorescent markers were transplanted into wild-type mice to observe the in vivo changes of costal chondrocytes. RESULTS: At 8 weeks after surgery, 3D optical profiles and micro-CT showed that in the graft group, the articular surface and subchondral bone were well preserved. Gait analysis and International Cartilage Repair Society (ICRS) score evaluation showed a good recovery of joint function and histological repair in the graft group. Safranin O staining showed the gradual integration of graft and host tissue. Costal cartilage from transgenic mice with fluorescent markers showed that donor-derived costal chondrocytes turned into osteocytes in the subchondral area of host femur. CONCLUSION: Costal cartilage grafting shows both functional and histological repair of osteochondral defect in mice. Graft-derived costal chondrocytes differentiate into osteocytes and contribute to endochondral ossification.

13.
Natl Sci Rev ; 10(9): nwad162, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37900058

RESUMO

Oxygen reduction reactions (ORRs) involve a multistep proton-coupled electron process accompanied by the conversion of the apodictic spin configuration. Understanding the role of spin configurations of metals in the adsorption and desorption of oxygen intermediates during ORRs is critical for the design of efficient ORR catalysts. Herein, a platinum-rare-earth-metal-based alloy catalyst, Pt2Gd, is introduced to reveal the role of spin configurations in the catalytic activity of materials. The catalyst exhibits a unique intrinsic spin reconfiguration because of interactions between the Gd-4f and Pt-5d orbitals. The adsorption and desorption of the oxygen species are optimized by modifying the spin symmetry and electronic structures of the material for increased ORR efficiency. The Pt2Gd alloy exhibits a half-wave potential of 0.95 V and a superior mass activity of 1.5 A·mgPt-1 in a 0.1 M HClO4 electrolyte, as well as higher durability than conventional Pt/C catalysts. Theoretical calculations have proven that the spin shielding effect of Gd pairs increases the spin symmetry of Pt-5d orbitals and adsorption preferences toward spin-polarized intermediates to facilitate ORR. This work clarifies the impact of modulating the intrinsic spin state of Pt through the interaction with the local high spin 4f orbital electrons in rare-earth metals, with the aim of boosting the spin-related oxygen reduction reaction, thus fundamentally contributing to the understanding of new descriptors that control ORR activity.

14.
BMC Genomics ; 24(1): 599, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814207

RESUMO

BACKGROUND: MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the two main types of non-coding RNAs that play crucial roles in plant growth and development. However, their specific roles in the fiber growth of ramie plant (Boehmeria nivea L. Gaud) remain largely unknown. METHODS: In this study, we performed miRNA and whole-transcriptome sequencing of two stem bark sections exhibiting different fiber growth stages to determine the expression profiles of miRNAs, lncRNAs, and protein-encoding genes. RESULTS: Among the identified 378 miRNAs and 6,839 lncRNAs, 88 miRNAs and 1,288 lncRNAs exhibited differential expression. Bioinformatics analysis revealed that 29 and 228 differentially expressed protein-encoding genes were targeted by differentially expressed miRNAs and lncRNAs, respectively, constituting eight putative competing endogenous RNA networks. lncR00022274 exhibited downregulated expression in barks with growing fibers. It also had an antisense overlap with the MYB gene, BntWG10016451, whose overexpression drastically increased the xylem fiber number and secondary wall thickness of fibers in the stems of transgenic Arabidopsis, suggesting the potential association of lncR00022274-BntWG10016451 expression with fiber growth. CONCLUSIONS: These findings provide insights into the roles of ncRNAs in the regulation of fiber growth in ramie, which can be used for the biotechnological improvement of its fiber yield and quality in the future.


Assuntos
Boehmeria , MicroRNAs , RNA Longo não Codificante , Transcriptoma , Perfilação da Expressão Gênica , Boehmeria/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/genética
15.
Front Plant Sci ; 14: 1217956, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674737

RESUMO

Ramie is an important fiber feed dual-purpose crop in China and plays an important role in the national economy. However, ramie yield and quality can be reduced after many years of continuous cultivation. Currently, relatively little research has been conducted on rhizosphere metabolites and their pathways in continuous ramie cropping. Therefore, a healthy group (CK) and obstacle groups (XZQG, JZ, DJY, and GXD) with 8 years of continuous cultivation were selected for the study. LC-MS and GC-MS untargeted metabolomics were used to explore and analyze ramie rhizosphere metabolites and pathways. The results revealed that significant differences in the agronomic traits of ramie occurred after 8 years of continuous cultivation, with dwarfed plants and decreased yields in the obstacle groups. Metabolomic analysis identified 49 and 19 rhizosphere metabolites, including lipids, organic acids, phenols, and amino acids. In addition, four differential metabolic pathways (phenylpropanoid biosynthesis, fatty acid metabolism, amino acid metabolism, and ascorbate and aldarate metabolism) were elucidated. It was also clarified that sinapic acid, jasmonic acid, glutamine, and inositol might be the main metabolites affecting ramie continuous-cropping obstacle groups, and they were significantly correlated with ramie agronomic traits and physiological indicators. This provided important insights into the mechanisms affecting continuous ramie cropping. Accordingly, it is expected that the increase or decrease of sinapic acid, jasmonic acid, glutamine, and inositol in the soil will alleviate obstacles to continuous ramie cropping and promote the healthy development of the ramie industry in the future.

16.
Cell Death Discov ; 9(1): 312, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626040

RESUMO

Muscular fatty infiltration is a common and troublesome pathology after rotator cuff tears (RCT), which mainly derives from fibro-adipogenic progenitors (FAPs). Compared to the RCT, fatty infiltration is not so severe in Achilles tendon tears (ATT). The knowledge of why fatty infiltration is more likely to occur after RCT is limited. In this study, more severe fatty infiltration was verified in supraspinatus than gastrocnemius muscles after tendon injury. Additionally, we revealed higher adipogenic differentiation ability of RCT-FAPs in vitro. Activation of Akt significantly stimulated GSK-3ß/ß-catenin signaling and thus decreased PPARγ expression and adipogenesis of RCT-FAPs, while the inhibition effect was attenuated by ß-catenin inhibitor. Furthermore, Wnt signaling activator BML-284 limited adipogenesis of RCT-FAPs, alleviated muscular fatty infiltration, and improved parameters in gait analysis and treadmill test for RCT model. In conclusion, our study demonstrated that suppressed Akt/GSK-3ß/ß-catenin signaling increased PPARγ expression and thus contributed to excessive adipogenesis in RCT-FAPs. Modulation of Akt/GSK-3ß/ß-catenin signaling ameliorated excessive fatty infiltration of rotator cuff muscles and improved shoulder function after RCT.

17.
ACS Appl Mater Interfaces ; 15(26): 31384-31392, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37341697

RESUMO

High entropy oxide (HEO) has shown to be a new type of catalyst support with tunable composition-function properties for many chemical reactions. However, the preparation of a metal nanoparticle catalyst supported on a metal oxide support is time-consuming and takes multiple complicated steps. Herein, we used a one-step glycine-nitrate-based combustion method to synthesize highly dispersed rhodium nanoparticles on a high surface area HEO. This catalyst showed high selectivity to produce CO in CO2 hydrogenation with 80% higher activity compared to rhodium nanoparticle-based catalysts. We also studied the effect of different metal elements in HEO and demonstrated that high CO selectivity was achieved if one of the metals in the metal oxide support favored CO production. We identified that copper and zinc were responsible for the observed high CO selectivity due to their low *CO binding strength. During hydrogenation, a strong metal-support interaction was created through charge transfer and formed an encapsulated structure between rhodium nanoparticles and the HEO support to lower the *CO binding strength, which enabled high CO selectivity in the reaction. By combining different metal oxides into HEO as a catalyst support, high activity and high selectivity can be achieved at the same time in the CO2 hydrogenation reaction.

18.
J Cosmet Dermatol ; 22(12): 3395-3404, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37310421

RESUMO

BACKGROUND: Male androgenetic alopecia (MAGA) has been one of the most common reasons for hair consultation, which affects more than half of men under the age of 50. Recently, follicular unit extraction (FUE) megasession has been an attractive treatment option for patients with severe AGA. However, compared with hair transplant surgery by traditional FUE or follicular unit transplantation (FUT), a megasession lacks a suitable surgical design solution for Asian high-grade AGA patients. Therefore, we introduced novel principles for surgical design into FUE megasession for Asians. OBJECTIVE: The goal was to investigate the naturalness of hair, patient and doctor satisfaction level, and safety assessment of FUE megasession with the specific surgical design, to explore a novel technique for an efficient, satisfactory, and safe FUE megasession procedure. METHODS: Thirty-six Asian male patients with AGA in Hamilton Grade V-VI were enrolled in the research. All participants underwent FUE megasession treatment with the specific surgical design. The investigators observed the patients' general conditions, surgical information, naturalness of hair, and patient and doctor satisfaction level and adverse reactions. RESULTS: Before surgery, the average age of patients was 36.8 ± 9.6 years, and average duration of disease was 8.3 ± 3.8 years. During surgery, we harvested an average of 3705 ± 383 grafts. Recipient density ranged from 30 FUs/cm2 to 50 FUs/cm2 , and the total operation time was 10.6 ± 0.9 h. After surgery, patient-rated Likert score for naturalness of hair was as high as 4.72, and the doctor rated 4.61. Patient satisfaction score was up to 4.64, and the doctor scored 4.75. No serious side effects occurred in the study. CONCLUSION: FUE megasession with the introduced surgical design is a satisfactory treatment option for patients with high-grade AGA in Asians, with few side effects. The application of the novel design method can effectively lead to relatively natural density and appearance in one operation. Due to its remarkable effect, high satisfaction level, and few postoperative complications, FUE megasession with the introduced surgical design has great potential for Asian high-grade AGA patients.


Assuntos
Alopecia , Folículo Piloso , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Folículo Piloso/transplante , Alopecia/cirurgia , Cabelo/transplante , Transplante de Pele , Complicações Pós-Operatórias
19.
Cell Death Dis ; 14(2): 88, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750550

RESUMO

Osteoblast apoptosis plays an important role in age-related bone loss and osteoporosis. Our previous study revealed that advanced oxidation protein products (AOPPs) could induce nicotinamide adenine dinucleotide phosphate oxidase (NOX)-derived reactive oxygen species (ROS) production, cause mitochondrial membrane potential (ΔΨm) depolarization, trigger the mitochondria-dependent intrinsic apoptosis pathway, and lead to osteoblast apoptosis and ultimately osteopenia and bone microstructural destruction. In this study, we found that AOPPs also induced mitochondrial ROS (mtROS) generation in osteoblastic MC3T3-E1 cells, which was closely related to NOX-derived ROS, and aggravated the oxidative stress condition, thereby further promoting apoptosis. Removing excessive ROS and damaged mitochondria is the key factor in reversing AOPP-induced apoptosis. Here, by in vitro studies, we showed that rapamycin further activated PINK1/Parkin-mediated mitophagy in AOPP-stimulated MC3T3-E1 cells and significantly alleviated AOPP-induced cell apoptosis by eliminating ROS and damaged mitochondria. Our in vivo studies revealed that PINK1/Parkin-mediated mitophagy could decrease the plasma AOPP concentration and inhibit AOPP-induced osteoblast apoptosis, thus ameliorating AOPP accumulation-related bone loss, bone microstructural destruction and bone mineral density (BMD) loss. Together, our study indicated that therapeutic strategies aimed at upregulating osteoblast mitophagy and preserving mitochondrial function might have potential for treating age-related osteoporosis.


Assuntos
Produtos da Oxidação Avançada de Proteínas , Mitofagia , Produtos da Oxidação Avançada de Proteínas/metabolismo , Apoptose , Osteoblastos/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Camundongos
20.
Adv Biol (Weinh) ; 7(10): e2200321, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36750967

RESUMO

Brain and bone degenerative diseases such as Alzheimer's disease and osteoporosis are common in the aging population and lack efficient pharmacotherapies. Myeloid cells are a diverse group of mononuclear cells that plays important roles in development, immune defense, and tissue homeostasis. Aging drastically alters the expansion and function of myeloid cells, which might be a common pathogenesis of the brain-bone degenerative diseases. From this perspective, the role of myeloid cells in brain-bone degenerative diseases is discussed, with a particular focus on metabolic alterations in myeloid cells. Furthermore, targeting myeloid cells through metabolic regulation via drugs such as metformin and melatonin is proposed as a potential therapy for the clinical treatment of brain-bone diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...